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Abstract
We study the dynamics of an isotropic solution of polar filaments coupled by
molecular motors acting as active cross-links which generate relative motion
of the filaments in two and three dimensions. We investigate the mechanical
properties of the homogeneous and isotropic state. We also consider the stability
of the homogeneous state for constant motor concentration, taking into account
excluded volume and an estimate of entanglement.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Soft active systems are a new and exciting class of complex fluids to which energy is
continuously supplied by internal or external sources. Biology provides many examples
of such systems, including cell membranes and biopolymer solutions driven by chemical
reactions, living cells moving on a substrate, and the cytoskeleton of eukariotic cells [1].
The cytoskeleton is a complex network of long filamentary proteins (mainly F-actin and
microtubules) cross-linked by a variety of smaller proteins [1, 2]. Among the latter are clusters
of motor proteins, such as myosin and kinesin, that use chemical energy from the hydrolysis
of ATP to ‘walk’ along the filaments, mediating the exchange of forces between them [3–
6]. This out of equilibrium chemical activity in motor–filament solutions is known to lead to
complex cooperative behaviour [4, 7–9] including pattern formation and creation of dissipative
structures. In addition, even in the absence of macroscopic patterning the mechanical response
functions of such a mixture are strongly modified by the novel microscopic dynamics occurring
due to the addition of motors to a solution of semiflexible filaments. In this paper we will
describe some recent work [10–12] attempting to study certain aspects of these motor–filament
systems.

In the next section we consider the linear viscoelastic response of an isotropic solution of
entangled polar filaments interacting with motor clusters in the regime where the motors do not
lead to the formation of macroscopic patterns. In section 3 using a hydrodynamic approach,
we investigate the stability of the isotropic state to the formation of ordered states or patterns.
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Figure 1. (a) The active solution with motor centres and entanglement points. (b) The ‘tube’
encircling the polymer and the directed motion vm. We show the lengths ξ, Le, De.

Finally in section 4 we discuss a microscopic model of the filament–motor interaction enabling
us to derive the parameters of the hydrodynamic model.

2. Viscoelastic response of isotropic solutions

An example of a filament/motor mixture is the F-actin-myosin-II system. Myosin
spontaneously aggregates in vitro to form clusters. In an ATP rich system these myosin clusters
can then bind to pairs of filaments and actively move the filaments with respect to each other
(see figure 1). In a sheared sample this results in rapid release of elastic strains, for the directed
motion of the polymers leads to a reduction of the reptation time from trept ∼ L3 (characteristic
of diffusion) to trept ∼ L for filaments of length L sliding at constant speed [6, 13]. Motivated
by experimental observations and this simple argument, one is led to ask a number of further
quantitative questions. What is the elastic stress supported by such a system? What are the
relevant relaxation mechanisms and timescales? As a step in this direction, we focus here on
a simple model for the viscoelasticity of an ‘active’ solution of motile semiflexible filaments,
within the ‘tube’ picture of polymer dynamics. This is clearly an over-simplification of the
in vitro system described above; nevertheless, the physics of the problem, even with this
approximation, is interesting and non-trivial.

We consider a monodisperse solution of semiflexible and polar polymers of persistence
length Lp, length L and diameter a, with Lp � a, at a monomer concentration ρa such that
the mesh-size of the solution, is ξ � (ρaa)−1/2 � Lp, L [14]. We model the ATP induced
activity of actin clusters by stochastic forces on the polymers, parallel to the filament contour
(transverse motion is constrained by entanglements), which always act in the same direction
with respect to the polarity of the filaments. The effect of the motor activity is

(1) to increase the amplitude of the longitudinal fluctuations along the contour of the filaments
giving rise to a higher effective temperature T → T + Tact for the tangential motion, and

(2) to give the filaments a non-zero curvilinear drift velocity in their tubes, vm.

Increasing/decreasing activity leads to an increase/decrease in Tact and vm. A sketch of the
system is shown in figure 1. Effective temperatures for non-equilibrium systems have been
used to model noise in foams and other driven systems [15].

We derive the linear viscoelastic response of such an active polymer solution, assuming
that its structure is not perturbed by the activity of the motor clusters. This is a very crude
assumption; nevertheless, we uncover rich physical behaviour, as the ‘activity’ modifies the
already subtle dynamics of passive semiflexible polymer solutions [19–23].
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The linear response of this active filament solution to a weak time dependent shear strain,
γ i j(t), is characterized by the shear modulus G(t), such that the shear stress is [14]

σi j(t) =
∫ t

−∞
dt ′ G(t − t ′)γ̇ i j(t

′). (1)

The shear modulus can be most simply be calculated by calculating the stress due to the
application of a step strain for which γ̇(t) = γδ(t).

The stress is calculated from the fluctuating dynamics of Kratky–Porod worm-like chains.
A typical filament conformation is parameterized by R(s). The Hamiltonian of a worm-like
chain is given by

Hwlc[R(s),�(s)] = κ/2
∫ L

0
ds |∂2

s R|2 +
∫ L

0
ds �(s)(|∂sR|2 − 1), (2)

where ∂x A ≡ ∂ A/∂x and an instantaneous local tension, �(s), is induced by the
incompressibility of the chain. The persistence length Lp = κ/kBT is the length scale over
which the chain loses memory of its orientation. The filaments are confined to a ‘tube’ [14]
of diameter De ∼ Lp(ξ/Lp)

6/5. We define an entanglement (deflection) length [16, 18]
Le ∼ Lp(ξ/Lp)

4/5, the distance between successive collisions of the filament with its tube
(see figure 1(b)). The hierarchy of length scales is L, Lp � Le � a. On length scales � less
than Le, the relaxation is due to the dynamics of ‘free’ chains [14], whilst for � > Le it is due
to diffusive directed motion of the polar filaments in their tubes. For � < Le (and consequently
� < Lp), the chain conformation is anisotropic and can be described by an expansion about a rod
with orientation û (a unit vector, |û|2 = 1), R(s, t) = (s −r‖(s, t))û +r⊥(s, t); û ·r⊥(s, t) ≡ 0
with parallel (longitudinal) and perpendicular (transverse) components of motion,r‖, |r⊥| � s.
The filament dynamics in a shear flow are described by the equations [25],

∂t r⊥(s, t) = ζ−1
⊥

[−κ∂4
s r⊥ + �(s, t)∂2

s r⊥ + ∂s�∂sr⊥ + f⊥(s, t)
]

+ (I − ûû) · γ̇(t) · r⊥ + O(|∂sr⊥|3) (3)

∂t r‖(s, t) = ζ−1
‖

[−κ∂4
s r‖ − ∂s� + fm(s, t) + f‖(s, t)

]
+ γ̇ i j(t)ûi û j (r‖ − s) + O(|∂sr⊥|3).

(4)

Due to the constraint of constant length,

∂sr‖ = 1
2 |∂sr⊥|2 + O(|∂sr⊥|4), (5)

which determines �, equations (3), (4) are coupled. Because of the rod-like nature of the
polymer segment, the coupling to the shear flow is anisotropic. The friction coefficients
are ζ‖ = 2πη log |ξ/a| = 1

2ζ⊥. For short filaments L < Lp, the rotational diffusion of a
rod of length L determines the dynamics of û(t) which is much slower than that of r‖, r⊥.
We have in addition to the thermal fluctuating force ( f‖(s, t),f⊥(s, t)) a non-equilibrium or
active force, fm(s, t), in the longitudinal direction due to the activity of the motors. The
thermal force has zero mean, 〈f(s, t)〉 = 0, and mean square fluctuations 〈 fi (s, t) f j (s′, t ′)〉 =
2kBT δi jζiδ(s − s′)δ(t − t ′), where the subscripts {i} refer to ‖,⊥. We choose to model the
active force by a non-zero mean 〈 fm(s, t)〉 = ζ‖vm and mean square fluctuations of the form
δ fm(s, t) = fm(s, t) − 〈 fm(s, t)〉, 〈δ fm(s, t)δ fm(s′, t ′)〉 = 2kBTactζ‖δ(s − s′)δ(t − t ′), giving
an active contribution, Tact, to the ‘temperature’ of the longitudinal motion. A self-consistent
description [24, 25] of the dynamics can be obtained from the solution of equations (3), (4)
and inextensibility. Because the transverse dynamics is cut off at Le, there is different
behaviour at high and low frequencies with a cross-over frequency ωe = 2απ/L4

e (α = κ/ζ⊥).
The dynamic fluctuations of semiflexible filaments are anisotropic [24, 25]. After time t ,
longitudinal fluctuations are relaxed over a length �‖(t) = (tkBT (2Lp)

5/2πη)1/8 for t < 1/ωe
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and �‖(t) = (tkBT L2
p L−3

e /2πη)1/2 for t > 1/ωe. In comparison, transverse fluctuations are
relaxed over a length �⊥(t) = (tkBT Lp/4πη)1/4 for t < 1/ωe [25] and can only relax by
reptation for t > 1/ωe.

We calculate the Kramers–Kirkwood stress tensor [14],

σi j(t) = −ρa

�

∫ �

0
ds 〈Fi (s, t)R j (s, t)〉, (6)

where F(s, t) is the total force on the filament at arc-length s at time t , and R(s, t) =
(s − r‖)û + r⊥ is the position of the filament. The force balance equations (3), (4) and the
rotational dynamics give F(s, t). After subtracting the minor contributions and the isotropic
part of the stress, we obtain

σi j(t) �
〈
ρa

�

∫ �∼Lp

0
ds

{
ûi û j

(
s∂s�︸︷︷︸
σ (1)

− r‖∂s�︸ ︷︷ ︸
σ (2)

)
− κ∂4

s r⊥i r⊥ j + ∂s (�∂sr⊥i ) r⊥ j︸ ︷︷ ︸
σ (3)

}

+ 3
ρaa

L
kBT

(
ûi û j − 1

3
δi j

)
︸ ︷︷ ︸

σ (4)

〉
, (7)

where the average is over thermal and active fluctuations and orientation. Three of the
four contributions to the shear stress, σ

(1,3,4)
i j , arise from the coupling of the strain to

r‖, r⊥ and û, respectively. They have been analysed recently for passive solutions [19–
23], and named tension, curvature and orientational stress, respectively. The term σ

(2)
i j =

−〈 ρa

�

∫ �∼Lp

0 ds r‖∂s�〉, which we call the longitudinal stress, is new. It has been ignored in
passive polymer solutions, Tact = 0, for it is then much smaller than the other three. In active
polymer solutions, however, for large enough motor activity, i.e. Tact/T > (Lp/Le)

5/2 − 1, it
can dominate the high-frequency response.

The short-time (high-frequency) moduli as well as terminal relaxation times differ from
those of passive polymer solutions. The active solution is harder at high frequencies due
to the increased fluctuations of the longitudinal modes. These also change the relative
magnitude of the longitudinal and transverse fluctuations, leading to two new relaxation
regimes. At very low frequencies, the directed motion of the filaments leads to a softening
or fluidification as suggested in the introduction. Our results are shown schematically in
figure 2 and summarized as follows. Upon submitting the system to a step shear, the shear
modulus G(t) decays for very short times as t−3/4, as for passive polymer solutions [22, 23].
This holds up to a time t0 ∼ (1 + Tact/T )−8/5 L3

pη/kBT , where we find a regime with two

new power law decays: G(t) ∼ t−1/8 up to a time t1 ∼ ηL−1/5
p ξ16/5/kBT and a modulus

G2 ∼ kB(T + Tact)ξ
−12/5 L−3/5

p , after which there is a faster decay G(t) ∼ t−1/2 (η is the
solvent viscosity). In the long-time regime, the relaxation modulus develops a plateau, as
trapped stress cannot relax due to entanglements before the filaments escape from their initial
tubes [14]. Whilst the magnitude of the plateaus are the same as for passive polymer solutions,
the tube renewal time has a different dependence on chain length L and persistence length
Lp. When L/Lp � 1, the dominant stress is due to constrained transverse fluctuations of the

filament [19, 20, 22] leading to a plateau of magnitude G3 ∼ ξ−14/5kBT/L1/5
p which begins at

a time tcoil
2 ∼ L3

p(ξ/Lp)
4(1+Tact/T )2η/kBT , and decays after a time t3 � L/vm. For filaments

with L/Lp � 1, the stress is due to constrained orientational dynamics [16–18, 22], and from
t rod
2 ∼ L2 Lp(ξ/Lp)

12/5(1 + Tact/T )2η/kBT we find a plateau of magnitude G4 ∼ kBT ξ−2 L−1

which decays after a time t4 � √
L Lp/vm.

We estimate typical timescales and moduli from a direct mapping of our calculation onto
the F-actin/myosin-II system. We have modelled the noise as a Gaussian white-noise of non-
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Figure 2. Shear modulus as a function of time t: comparison of active (thick-solid) and passive
(thin-dashed) solutions. The different regimes separated by t0, t1, tcoil

2 , t rod
2 , t3 and t4, respectively.

Top: timescale for active solutions. Bottom: timescale for passive solutions.

zero mean. In a slightly more realistic picture, a motor centre has periods of activity of duration
ts (the power-stroke) during which a constant force f0 is applied, separated by passive periods
which are Poisson distributed with a mean duration αts; α � 1. The motor clusters are also
assumed to be randomly distributed along the filaments at a mean distance �m. Assuming that
clusters act independently, we estimate from the mean force vm � (1 +α)−1 f0/ζ‖�m, and from
the local fluctuations of the force about its mean kBTact � f 2

0 tsα/(1 + α)ζ‖�m. If myosin is at
a concentration ρm and the mean number of myosin per cluster is N , then �m ∼ N(ρmξ2)−1.
Let us turn to numbers: a bound myosin has a power stroke of duration ts � 5 ms, a step
size of ds � 10 nm, and a stall force of fmax � 4 pN [1]. By considering viscous drag,
we estimate f0 � 0.1 pN � fmax. Actin has persistence length Lp � 17 µm and diameter
a � 7 nm. A solution of F-actin at a typical concentration 100 µg ml−1 has a mesh size
ξ ∼ 0.5 µm. For ρm = 0.1 µM (micromolar) and N � 10 we estimate �m ∼ 5 µm. This
gives Tact/T ∼ 102, so that the high-frequency behaviour described above should be relevant.
The cross-over modulus between the high and intermediate frequency regimes is G2 ∼ 10 Pa.
Long-time fluidification is also clear: relaxation times for coils (L = 50 µm) and rod-like
polymers (L = 5µm) are respectively t3 ∼ 1 s and t4 ∼ 0.1 s, compared to t3 ∼ 104 s and
t4 ∼ 100 s for passive solutions at the same actin concentration. The corresponding plateaus
are respectively G3 ∼ 10−2 Pa and G4 ∼ 10−4 Pa.

3. Instabilities of the isotropic state

In the previous section we considered the situation in which the active solution (like a solution
of passive polymers) had an homogeneous and isotropic steady state. In other words, the
addition of motors to the passive solution did not lead to any ordered states or to the formation
of macroscopic patterns, including radial arrays or asters and one-dimensional bundles. It
has been shown both experimentally and theoretically [4, 7, 9] that dissipative structures can
be formed by filament/motor mixtures. It is therefore interesting to consider the conditions
under which such an isotropic state of our system of polar filaments with active cross-links
(see figure 1) is stable, and hence for which the arguments of the previous section are valid.
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Continuum models of active filament systems have been used to show that spatial patterns
are obtained as non-equilibrium solutions of the system dynamics [26, 27, 30–32]. Such
hydrodynamic models use symmetry arguments to propose the dynamics of coarse-grained
fields for density and polarization of filaments. A more microscopic but still phenomenological
approach was taken by Kruse and Jülicher [9, 33], who starting with a model for the relative
velocity between filaments considered a dynamical model for the development of contractile
and motile structures in polar filament bundles.

We would like therefore to make a connection between the hydrodynamic picture and
more microscopic models. As a step in this direction, we start from a phenomenological
model in the spirit of Kruse et al [9, 33] and obtain a set of continuum equations to describe
the dynamics and organization of polar filaments driven by molecular motors in an unconfined
geometry in (quasi-)two and three dimensions (d = 2, 3).1 By modelling the motor–filament
interaction microscopically, we can determine the magnitude and, most importantly, the sign of
the parameters of the continuum equations, which cannot be obtained by symmetry arguments.
We consider a isotropic filament solution, include excluded volume and estimate the effects of
entanglement on the diffusive dynamics. Our result is a phase diagram (figure 4) as a function
of the filament density and motor properties that is expected to be relevant to the analysis of
recent experiments [5].

The filaments are modelled as rigid rods of length l and diameter b � l. Each filament is
identified by the position r of its centre of mass and a unit vector û pointing towards the polar
end. Taking into account filament transport, the normalized filament probability distribution
function, �(r, û, t), obeys a conservation law [14],

∂t� + ∇ · J + R · Jr = 0, (8)

where R = û × ∂û is the rotation operator. The translational and rotational currents J and
Jr have diffusive terms, contributions coming from excluded volume and active contributions
coming from the motors. Following Kruse et al, the active contributions are obtained from
relative velocities of interacting filaments due to the motors which are parameterized by the
parameters α, β and γ , the rates for the various motor-induced translations and rotations
(figure 3). The contribution proportional to α depends on the separation of the centres of the
filaments and results from a difference in motor activity between the ends and mid-points of
the filaments. It tends to align the centres of mass and polar heads of the pair (see figure 3(a)).
The contribution proportional to β vanishes for aligned filaments and can separate antiparallel
filaments, as illustrated in figure 3(c). This mechanism yields both translational and rotational
currents. The γ term tends to rotate filaments until they are parallel or perpendicular.

We focus on the filament dynamics on length scales large compared to their length, l,
where the filament dynamics can be described in terms of the filament density ρ(r) and the
local filament orientation p(r) defined as the first two moments of the distribution �(r, û, t),

(
ρ(r, t)

p(r, t)

)
=

∫
dû

(
1

û

)
�(r, û, t). (9)

Coarse-grained equations for ρ and p can be obtained by using the expressions for the active
and diffusive (passive) currents, writing the density �(r, û, t) in the form of an exact moment
expansion, and retaining only the first two moments in this expansion [11]. The dynamical
equations obtained can be linearized about a homogeneous state, with constant density ρ0 and
an isotropic orientational distribution of filaments,corresponding to p = 0. Letting ρ = ρ0+δρ

1 We assume that even in 3d, motors only induce relative displacement and rotation within the plane that contains the
two cross-linked filaments.
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Figure 3. Sketckes of motor-induced filament interactions, viewed from the rest frame of filament
2. The angular bracket connecting each pair of filaments represents the motor. A thick and a
dashed arrow show the position of filament 1 before and after translation, respectively. In each case
the translation is followed by a rotation at a rate γ in the direction indicated by the curved arrow.
(a) The contribution to v proportional to α is along the direction of the relative displacement ξ of
the centres of mass of the two filaments (thin arrow). The contribution to v proportional to β is
illustrated in (b) and (c) for two filaments with ξ = 0 and n̂1 · n̂2 > 0 (b) and n̂1 · n̂2 < 0 (c). In
both cases the translation at a rate β in the direction of n̂2 − n̂1 (thin arrow) tends to bring the polar
heads of the two filaments to the same spatial location. In (b) the counterclockwise rotation aligns
the filaments, while in (c) the clockwise rotation anti-aligns and separates them.
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Figure 4. Phase diagram for β = 0. For ρ̃0 < ρc ≈ 0.826 and αρ < α̃ < αL , density fluctuations
grow on all scales, while orientational fluctuations are stable (‘bundled’ state). For ρ̃0 < ρc and
αL < α̃ < αρ short scale orientational fluctuations are unstable, while density fluctuations remains
stable (‘oriented’ state). All modes are unstable for α̃ > max(αρ, αL ). The insets show the modes
at finite β̃ for α̃ = 5.65, β̃ = 0.14, ρ̃0 = 0.5 (bundled) and α̃ = 2.3, β̃ = 0.09, ρ̃0 = 1.5 (oriented).

and keeping only terms up to third order in the gradients, the linearized equations are given by

∂tδρ = 1

d

[
D‖ + (d − 1)D⊥

]
(1 + v0ρ0)∇2δρ − αlv0ρ0

12d
∇2δρ

− βl2v0ρ0(2d + 1)

24d(d + 2)
∇2(∇ · p), (10)
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∂t ti = −Drti +
1

d + 2

[
(d + 1)D⊥ + D‖

]∇2ti +
2

d + 2

(
D‖ − D⊥

)
∂i∇ · p

− αlv0ρ0

12d(d + 2)

[∇2ti + 2∂i∇ · p
]

+
βv0ρ0

d
∂iδρ +

βl2v0ρ0(2d + 1)

24d2(d + 2)
∂i∇2δρ, (11)

where D⊥, D‖ are the transverse and longitudinal diffusion constants and Dr the rotational
diffusion constant. The local orientation is not a conserved variable and decays at a rate ∼Dr .
Both equations display the competition of diffusive terms (∝D∇2) and pattern-forming terms
(∝−α∇2). The linear instability of the homogeneous state occurs when the pattern-forming
terms dominate. To linear order, the contribution from the rotational current (proportional to
γ ) vanishes and excluded volume corrections only appear in the density equation.

To study the linear stability of the homogeneous state, we expand the fields in Fourier
components, δρ(r) = ∑

k ρkeik·r and p(r) = ∑
k pkeik·r, and separate pk into its components

longitudinal and transverse to k, namely pL
k = k̂ · pk and pT

k = k̂ × pk, with k̂ = k/|k|.
In d dimensions there are d − 1 degenerate transverse modes describing the decay of
fluctuations in pT

k , with rate λT (k). There are two coupled modes describing the decay of
density and pL

k fluctuations, given by λ±(k). Stability is controlled by the real part of
the largest eigenvalue, λ+(k), we need to specify the various diffusion constants. For
dilute solutions of long thin rods these are D⊥ = D‖/2 = D/2 and Dr = 6D/ l2, with
D = kBT ln(l/b)/(2πηl) and η the solvent viscosity [14]. At higher density, the dynamics
is modified by the topological constraint that the filaments cannot pass through each other,
resulting in entanglement. This strongly suppresses transverse and rotational diffusion.
Entanglement affects both the diffusive and the active currents. For a first estimate of its
role on the dynamics of active solutions, we incorporate its effect only on the diffusive
currents and do so by replacing the various diffusion constants by the values obtained in the
literature for the corresponding entangled passive system, D⊥ � D/[2(1 + c⊥ρ̃0(l/b)d−2)2]
and Dr � 6D/[l2(1 + crρ̃0(l/b)d−2)2], with cr,⊥ constants of order unity and D‖ essentially
unaffected by entanglement [14, 34].

It is instructive to first consider the case of β = 0, where the two longitudinal modes are
decoupled. The decay rates of density and pL

k fluctuations are given by λρ and λL , respectively.
At low density, λρ exceeds λL for all k, and becomes positive for α̃ = αl/(8D) > αρ(ρ̃0) on
all length scales, with αρ = (3/2)

[
1 + 1/ρ̃0 + 1/(2(1 + ρ̃0))

]
, for d = 2 (c⊥ = cr = 1). At

high density, λL exceeds λρ , and orientational fluctuations with k > k0 ∼ (α̃ − αL )−1/2ρ̃
−3/2
0

become unstable for α̃ > αL (ρ̃0) = (3/ρ̃0)
[
1 + (1 + ρ̃0)

−2/2
]
, while density fluctuations can

remain stable. The phase diagram in the (α̃, ρ̃0) plane is shown in figure 4. We define a
critical line αp(ρ̃0) as the value of α̃ above which the orientational mode becomes unstable at
a k0 < 1/ l, with the result αp = α̃L + 24/(ρ̃0(1 + ρ̃0)

2).
A finite value of β̃ = βl/(8D) has two effects on the structure of the linear modes.

First, the modes can change from diffusive at small k to propagating above a typical wave-
vector ∼ β̃−1/2, reflecting the oscillatory behaviour arising from the competition between
bundling (α̃) and separation (β̃). Second, β̃ stabilizes the homogeneous state at large length
scales. As for β = 0, at low density the homogeneous state becomes unstable via a stationary
instability [11]. Consideration of the eigenvector shows that at the largest scales this instability
driven by filament bundling (α̃) is associated with density fluctuations. At intermediate scales,
where the growth rate is largest, it describes coupled density and orientational fluctuations,
suggesting that the ‘bundled’ state may have a definite orientation on short scales. At high
density the behaviour is controlled by an oscillatory instability [11], describing the growth of
orientational fluctuation. The phase diagram in the (α̃, ρ̃0) plane is similar to that obtained for
β̃ = 0. The instability is driven by α that controls filament bunching, while filament separation
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Figure 5. (a) The two filaments connected by an active cross-link and the geometry of the overlap:
the filaments’ centres are separated by ξ = s1n̂1 − s2n̂2. (b) The profile of the motor stepping rate.

driven by terms proportional to β stabilizes the homogeneous state on short length scales. The
rotation rate γ plays no role to linear order.

4. Estimating α, β, γ

In the previous section the boundaries of stability of the homogeneous state were calculated
in terms of the parameters α, β, γ which characterized the relative velocity of two interacting
filaments due to motor activity. In this section we indicate how one can derive the
motor-mediated velocities between filaments from a microscopic description of the forces
exchanged between the motors and the filaments, thus establishing the connection between the
hydrodynamic equations and the microscopic motor dynamics.

Each filament is identified by the location ri of its centre of mass and a unit vector n̂i

pointing towards the polar end. The mobile cross-links are formed by small aggregates of
molecular motors that exert a force on filaments by converting chemical energy from the
hydrolysis of ATP into mechanical work. Each motor cluster is assumed to be composed of
two heads, with the i th head (i = 1, 2) attached to filament i at position r×

i = ri + n̂i si , with
si the position along the filament relative to the centre of mass, −l/2 � si � +l/2. The motor
cluster has size lm � l. A schematic is shown in figure 5. Motor heads are assumed to step
towards the polar end of filaments at a known speed, u(s), which generally depends on the point
of attachment. Spatial variations of u(s) may for instance arise from motors slowing down as
they approach the polar end of the filament due to crowding [28]. This is incorporated here by
using the step-like speed profile shown in figure 5, where u(s) is constant along the filament,
but vanishes in a small region of extent lm � l at the polar end. Both filaments and motors
move through a solution. We assume that the filament dynamics is overdamped and the friction
of motors is very small compared to that of filaments. Momentum conservation then requires
that in the absence of external forces and torques, the total force acting on filaments centred at
a given position be balanced by the frictional force experienced by the filament while moving
through the fluid. For a small rigid cluster, angular momentum conservation means that we find
γ = 0. We put all these elements together (details of the calculations are given elsewhere [12])
to obtain similar hydrodynamicequations to those obtained from the phenomenologicalmodel,
but with a number of terms missing and some new terms present [12]. The terms leading to
bundling and separation though are easily identified, and allow us to give the estimates

α ≈ m0v0u0lm, (12)

β ≈ 2m0v0u0. (13)
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The parameter α has the dimensions of a diffusion constant and describes filament bunching or
bundling, which, in contrast to conventional diffusion, tends to enhance density fluctuations.
The coefficient β is a velocity and describes the rate at which motor clusters sort or separate
filaments of opposite polarity. If the motor stepping speed u(s) is constant, independent of the
position s along the filament, then α = 0. In general, even when α �= 0, we expect α � β. So
we see that for mean-field models of the type considered here a varying motor velocity profile
which goes to zero at the + end is required for the formation of inhomogeneous states.

5. Discussion

The rich behaviour of mixtures of filaments and motors is still far from being completely
understood. The validity of the simple picture in section 2 needs to be investigated and tested
by experiment. Even in the isotropic regime, an active solution could be pre-stressed, and it
is possible that imposing a shear flow could decrease rather than increase the stress. Within
a tube model we have assumed that the tube has the same properties as those of a passive
solution, while it is totally reasonable to expect the properties of the tube to be changed by
activity. Another assumption that should be tested is the one that the active fluctuations couple
only to the longitudinal modes.

Much more work is needed to understand the nature of the spatially inhomogeneous
state [29–31]. We have not included motor transport in the above description, which is
important for very processive motors and at low motor densities. It will also be interesting
to study the effect of shear flow on the formation and stability of spatially inhomogeneous
structures.
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